Ordering Unicyclic Graphs with Respect to F-index
نویسندگان
چکیده
F-index of a graph is the sum of the cube of the degrees of the vertices. In this paper, we investigate the F-indices of unicyclic graphs by introducing some transformation, and characterize the unicyclic graphs with the first five largest F-indices and the unicyclic graphs with the first two smallest F-indices, respectively.
منابع مشابه
ar X iv : 1 10 5 . 55 22 v 1 [ m at h . C O ] 2 7 M ay 2 01 1 The largest n − 1 Hosoya indices of unicyclic graphs ∗
The Hosoya index Z(G) of a graph G is defined as the total number of edge independent sets of G. In this paper, we extend the research of [J. Ou, On extremal unicyclic molecular graphs with maximal Hosoya index, Discrete Appl. Math. 157 (2009) 391–397.] and [Y. Ye, X. Pan, H. Liu, Ordering unicyclic graphs with respect to Hosoya indices and Merrifield-Simmons indices, MATCH Commun. Math. Comput...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملThe maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.01128 شماره
صفحات -
تاریخ انتشار 2016